Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock.
نویسندگان
چکیده
In mammals, circadian rhythms are generated by the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons are heterogeneous and can be classified according to their function, anatomical connections, morphology and/or peptidergic identity. We focus here on gastrin-releasing peptide- (GRP) and on GRP receptor- (GRPr) expressing cells of the SCN. Pharmacological application of GRP in vivo or in vitro can shift the phase of circadian rhythms, and GRPr-deficient mice show blunted photic phase shifting. Given the in vivo and in vitro effects of GRP on circadian behavior and on SCN neuronal activity, we investigated whether the GRPr might be under circadian and/or diurnal control. Using in situ hybridization and autoradiographic receptor binding, we localized the GRPr in the mouse SCN and determined that GRP binding varies with time of day in animals housed in a light-dark cycle but not in conditions of constant darkness. The latter results were confirmed with Western blots of SCN tissue. Together, the present findings reveal that changes in GRPr are light driven and not endogenously organized. Diurnal variation in GRPr activity probably underlies intra-SCN signaling important for entrainment and phase shifting.
منابع مشابه
Preparation and evaluation of 67Ga-DOTA-Bombesin (7-14) as a tumor scintigraphic agent
Introduction: Bombesin is a 14-aminoacid peptide isolated from frog skin. The mammalian counterparts of the frog peptide are neuromedin B (NMB) and gastrin-releasing peptide (GRP). Bombesin (BBN) is a peptide showing high affinity for the gastrin releasing peptide receptor (GRPr). Prostate, small cell lung cancer, breast, gastric, and colon cancers are known to over...
متن کاملPhenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the neural locus of the circadian clock. To explore the organization of the SCN, two strains of transgenic mice, each bearing a jellyfish green fluorescent protein (GFP) reporter, were used. In one, GFP was driven by the promoter region of the mouse Period1 gene (mPer1) (Per1::GFP mouse), whereas in the other, GFP was inserted in the prom...
متن کاملGastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling.
Vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP) acting via the VPAC2 receptor and BB2 receptors, respectively, are key signaling pathways in the suprachiasmatic nuclei (SCN) circadian clock. Transgenic mice lacking the VPAC2 receptor (Vipr2(-/-)) display a continuum of disrupted behavioral rhythms with only a minority capable of sustaining predictable cycles of rest ...
متن کاملA role for androgens in regulating circadian behavior and the suprachiasmatic nucleus.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock controlling behavioral and physiological rhythms, including rhythmic secretion of gonadal hormones. Gonadectomy results in marked alteration of circadian behaviors, including lengthened free-running period, decreased precision of daily onset of running, and elimination of early-evening but not late-ni...
متن کاملInteraction of colocalized neuropeptides: functional significance in the circadian timing system.
The suprachiasmatic nucleus (SCN), which appears to act as a circadian clock, contains a subpopulation of local circuit neurons in which vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), and gastrin releasing peptide (GRP) are colocalized. To determine whether VIP, PHI, and GRP interact within the SCN to produce a signal important for circadian control, the behavioral and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2006